
IBO 4.7 Migration Notes 1 of 3

Computer Programming Solutions

TECHNICAL INFORMATION SHEET

Migration Notes for IBO 4.7
IBO 4.7 represents an unusally comprehensive batch of changes for a sub-release. The reason, of course, is the changes
that Firebird v.2.0 has hit us with. A great deal of reimplementation and testing has had to go into supporting the new
SQL language features--such as Derived Tables and EXECUTE BLOCK-- as well as the tightened restrictions on SQL
syntax and the handling of relation aliases in the API statement block.

This paper is not so much about "migrating" as it is about tightening up some loose ends in legacy code that are now
biting some developers. Listed below are some pointers to solving problems that you might bump into.

Defaults
Since the changes began towards supporting Firebird 2 some defaults have changed.

Default SQL Dialect for TIB_Connection and TIB_Statement
Until relatively recently, the default was Dialect 1. It has been changed so that the default is Dialect 3. This will affect
legacy applications over Dialect 1 databases that are being migrated from old IBO projects which used the default
dialect. Unless you explicitly change it to Dialect l, the app will recompile as a Dialect 3 client and will cause an AV
when you attempt a statement request.

NOTE: You may need to open the DFM and explicitly delete the existing Dialect settings there, save the project, then
close and reopen it, before resetting the Dialect to 1. Delphi is notorious for messing up with defaults so, in the end, it
might be simpler to delete and recreate the objects if the defaults misbehave.

SQL
InterBase and earlier versions of Firebird were relatively tolerant of non-standard SQL syntaxes. Over time, Firebird
has moved steadily towards full compliance with standards. With Firebird 2.0, correctness is more strictly enforced
than before. The results have affected IBO itself, as well as application developers who have exploited "undocumented
features" of IB's syntax.

Relation Aliases
If a relation alias is used, you will need to change property settings from table names to relation alias names wherever
they are used. For example, if a query were:

select a.mycol1, a.mycol2
from mytable a

the Keylinks would have to be changed from:

MYTABLE.MYCOL1
to:
A.MYCOL1

Aggregations
You should study the Firebird 1.5.4 and Firebird 2 release notes carefully, especially with respect to SELECT
statements containing aggregations. Your old GROUP BY criteria from IB 5.x or 6.0, or from Firebird 1.0.x, just may
not be legal any more! You can no longer include fields in the output list that are not included in the GROUP BY
specification.

IBO 4.7 Migration Notes 2 of 3

SELECT * in Multi-table Sets
In SELECT * specifications, the '*' represents "all columns in one table". If your query is accessing multiple tables, via
joins or subqueries, leaving the '*' unqualified creates ambiguity. For Firebird 1.5.x and 2.x, it is no longer legal to
leave '*' unqualified. You must specify the relation name (or its alias) that the '*' applies to.

ADVICE: Don't use SELECT * queries at all! It is the ultimate "lazy SQL" and it makes debugging or changing your
application very awkward. Awkward = error-prone. Use the IBO editors to construct proper specification lists for your
queries.

Ambiguity in JOINs and Subqueries
With Firebird versions 1.5 and 2, tightened enforcement of standards made many legacy SQL statements involving
JOINs and subqueries illegal. Firebird 1.5 tolerated some illegal constructions for backward compatibility and issued
warnings, rather than exceptions. Firebird 2 is much more rigorous.

For Firebird, from version 2.0 onward, it is completely illegal to mix relation names and relation aliases in a query.
Read the FB 2 release notes!

ADVICE: Write clean SQL always and use relation aliases for EVERY field reference whenever you have JOINs or
subqueries. Avoid using query-builder tools designed for use with Access or other database engines that use pseudo-
SQL language interfaces.

Unnamed Derived Fields
Older database engine versions sometimes allowed you to retrieve output fields that were derived from expressions
without naming them. Fb 2 is intolerant of this practice and IBO 4.7 has become stricter in requiring named output
columns, e.g.

SELECT LAST_NAME || ', '|| FIRST_NAME AS FULL_NAME

A symptom of this problem will be an "unknown column" error, either from IBO or from the server. Because it is hard
to tell which database engine versions allow unnamed fields and which do not, discipline yourself always to name
them.

Unconventional Use of Brackets
If you are in the habit of building your queries using Access or other tools designed for non-standard data storage
software, then beware of the practice of these tools to insert extraneous brackets around clauses. Firebird and InterBase
are fairly tolerant of these "no-op" brackets and will try to ignore them.

However, the new requirements from Firebird 2, to support features such as derived tables and relation aliases in the
statement block, mean that IBO now has less latitude to identify and ignore brackets in strange places. Careless use of
redundant brackets may now have unexpected effects on IBO's parser.

ADVICE: Check over all statements and SQLWhereItems for redundant brackets and remove them. Brackets should
be used only to enforce the logic of a predicate (that's the part of a WHERE clause or a JOIN criterium that defines the
conditions for selecting rows). Don't enclose entire JOIN clauses or WHERE clauses, as is often seen in Access
queries.

Implicit Inner Joins
Implicit joins, a.k.a. SQL-89 join syntax, have been deprecated in the SQL standards for 15 years. If you have old code
that began life with a Paradox back-end, you might have quite a lot of these antiques around in your code, e.g.

SELECT A.*, B.ANOTHER
FROM A, B
WHERE B.ID = A.ID
AND A.LAST_NAME = :LAST_NAME

Get rid of these implicit joins. They have never been "friendly" to use with IBO, anyway. You have always had to
separate the search predicate (A.LAST_NAME = :LAST_NAME) from the join criteria (B.ID = A.ID) using JoinLinks.
Your statements will be a lot more maintainable and self-documenting if you use explicit joins:

IBO 4.7 Migration Notes 3 of 3

SELECT A.*, B.ANOTHER
FROM A
JOIN B
ON B.ID = A.ID
WHERE A.LAST_NAME = :LAST_NAME

And there will be no JoinLinks to worry about!

Last updated: 24 February 2007

	Computer Programming Solutions
	TECHNICAL INFORMATION SHEET
	Migration Notes for IBO 4.7
	Defaults
	Default SQL Dialect for TIB_Connection and TIB_Statement

	SQL
	Relation Aliases
	Aggregations
	SELECT * in Multi-table Sets
	Ambiguity in JOINs and Subqueries
	Unnamed Derived Fields
	Unconventional Use of Brackets
	Implicit Inner Joins

